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Abstract. Robust pattern recognition within the Bayesian framework for
scene segmentation/boundary detection is often hampered by the pres-
ence of textures within natural images. To improve segmentation/
boundary detection on natural images, it is necessary to combine mul-
tiple features effectively. Two algorithms for combining both color and
texture features to assist boundary detection processes are introduced.
One combines features through the surface processes and the other

through the line processes. The algorithms can be generalized for com-
bining any number of feature sets. © 1998 Society of Photo-Optical Instrumenta-
tion Engineers. [S0091-3286(98)00903-9]
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1 Introduction whereg(x,y) is the extracted local features, called the ob-

In this paper, color features are defined as features obtainedervation;s(x,y) is the surface process and represents a
by pixelwise operations such as scaling and mean subtracsmooth surface that is constrained by the observation;
tion on the original data, while texture features are defined 1(X,y) is the line process, which takes either 0 oV1s the
as features obtained by combination of pixelwise opera- gradient operator, anfl| is the norm in the feature vector
tions and local operations such as averaging and linear fil-space. The Euclidean norm is used in all of our experi-
ters. The color segmentation implies the segmentation us-ments. The second term is called the stabilizer and the third
ing only color features, while the texture segmentation term is the penalty. Throughout the rest of the paper, the
implies segmentation using only texture features. integral over the spatial domain is omitted for energy rep-

Many existing segmentation/boundary detection algo- resentation, implying that the total energy is the sum of
rithms deal only with either textured images or nontextured |ocal energy, which can be determined locally by two Mar-
imagest~® When texture segmentation algorithms are ap- kov random fields.
plied to nontextured images, they often fail to detect the  Through minimization of the energy function, the sur-
location of boundaries accurately, whereas when the colorface process maintains closeness to the observation, and
segmentation algorithms are applied to such images, theYygevelops into a smooth surface within a boundary where
can easily obtain accurate boundaries. On the other hand,_ o The surface process is allowed to be discontinuous at
when the color segmentation algorithms are applied to tex- 4o ries wheré=1. The penalty term penalize having
tured images, they produce spurious boundaries within tex- . .

I=1 so that it prevent$ from being 1 everywhere. As

tured regions and often fail to delineate the region bound- . . d
aries clearly. Thus, they are not sufficient for natural INcreases, the number of boundary pixels in the result de-

images, which contains both textured regions and nontex- ¢€aSes. ,
tured regions with clear boundaries. The energy landscape of Ed) is not convex, therefore,

Modeling the image formation process through a dis- W& must use a global optimization technique such as simu-

cretized system of partial differential equatioflRDE9 is lated anneal?ngg gxgd Hopfield network to obtain a near-
one way to address the segmentation/boundary detectiorPPtimal solutior.>* o _
problems*5 A model that has gained much attention re-  1nhe left image in Fig. 1 shows a synthetic image with

cently is called the weak membrane mod&/MM) and both tgxtured and nontextured regions. When the boundgry
consists of two Markov random fields: one models homo- detection process using the WMM with a color feature is
geneous surfaces and is called the surface process and thaPplied to this image, the middle image in Fig. 1 is ob-
other specifies discontinuities explicitly and is called the tained as the result. The process detected the sharp bound-
line proces$® With this method, the objective becomes ary between the two nontextured regions and also the

finding the global minimum of the energy function de- boundary between the top-textured regi@mass texture
scribed as and the nontextured region. However, it failed to complete

the boundaries between textured regions and between the
bottom two regions. It also produced many spurious bound-
aries within the textured regions.

Now the same membrane model is applied to a texture

— _ 2 2/1 _1\2 2
E_f alls=gl*+ u]Vs|*(1=1)*+vI* dx dy, @ feature set using Law’s texture filtetsee Sec. 5 for de-
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Fig. 1 Synthetic testimage and results of conventional boundary detection algorithms: left, the original
synthetic image; middle, a typical result of minimizing the WMM with color feature («=0.1, ©=1.0, and
v0=0.03); and right, a typical result with texture features («=0.1, ©=1.0, and »0=0.4).

tails). The result is the right image in Fig. 1. Note that all g,=\;g;, 3
boundaries are detected fairly well. However, spurious
double boundaries are produced between two nontexturedg = ) s, . (4)

regions, and the boundaries are relatively thicker than the
result of the color feature WMM. Thus, the accuracy of the The total energy of the model is
boundary location is not precise.

To achieve robust segmentation/boundary detection on
natural images, it is necessary to combine multiple featuresE= 2, a;[si— g2+ ul|Vs2(1—1)2+ vI2, ®)
effectively. This paper proposes algorithms that use both !
texture and color features and complement the deficiencies
observed in the preceding examples. Here, we call the pro-
cess of combining two sets of features blending. With the , S\
WMM, the blending can be done through the region pro- — (1 —)2="__ (1—-1)2=0, (6)
cesses or through the line processés oX oy

Another important issue related to many segmentation/
boundary detection methods is parameter estimation. We
have developed a heuristic parameter adaptation scheme to
enhance the performance of the Bayesian based boundary-_ 2 e —all2ey2 1271 _1\2 2
detection algorithn® This adaptation technique was modi- £ Z [\ aillsi= Gl " Al V(=D + w1 0
fied and applied in conjunction with the blending methods.

Section 2 describes the algorithm for blending through To ensure the assumption of E@) to be valid, an addi-
surface processes. Section 3 describes the algorithm fortional term u||VA||2(1—1)? is added to the energy func-
blending through line processes. Section 4 describes a pation. Thus, our final energy function for the feature blend-
rameter adaptation method to enhance the boundary detecing is
tion technique. Section 5 provides some experimental re-
sults, and Sec. 6 provides a summary and conclusions.

If we assume

then

E=Ei [N 2aillsi— gil 2+ N 2ul| Vs[> (1-1)2

2 Blending through Region Processes ) ) )
: . . . . +ul|VN[F(A=D2 ]+ vl= (8)
First, the algorithm is described in a general case whére

sets of features must be blended for boundary detection. Initially, \; are all set to M. Minimization of Eq.(5) is

Then it is described in detail for color and texture feature performed not only by updating andl but also by updat-

blending. ; . ) .
The main idea is to combine multiple features by nor- ing \; . Solving the Euler-Lagrange equation gives the up-
date rule fors; as

malized weights and to minimize the energy function with
respect to the weights to obtain near-optimal weights. The

weights are denoted; and satisfy the following con- ﬁ=—a-||S-—g-||+V[M(1—|)2VS-]. 9
straints: at e '

The update rule fol using the Hopfield network 95
Z 7\i:1, )\,20 (2)
|

dy

— Vsil2(1=D) = vl = Al ,, 10
Then the weighted features and surface processes are dt MZ Vsl )=y ()l (19
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1 features, respectively. Thus, adapts itself such that it
I= m, (11 weighs features with less enerfjg terms of the membrane
P~ Im equation, Eq(1)] more than the other.

Equation(16) does not guarantee thatremains in the
constrained ranggd,1] and\ must be forced to stay within
the range if it tends to go out of the range. By scaling two
sets of features in similar rangestends to stay within the
range. In our experiment, each feature image is normalized
to zero mean and variance 1 prior to the blending process.

where

lim A=0 lim T=0, (12

t—oo t—oo

andl , is the internal state variable for an analog neuron in
the Hopfield networR. The time variableT and A corre- 3 Blending through Line Processes

spond to the temperature and the gain control for the analog, , .. h thi hod hf has i i
neuron, respectivelyThey start from relatively large val-  With this method, each feature set has its own line process,

ues so that the energy landscape is convex with respect tgrowever, the line Erocesses are constr_ained to be identical
I.,. As they decrease, the energy approaches(Bgand  PY the term {;—1;) in the energy equation. The energy to
the line process becomes either 1 or 0. A typical scheduling P& mMinimized is

for T andA is
E=> | aillsi—gill2+ mil VsilP(1— 1) %+ 12
T(M=75T(n—1), A(N)=»A(n—1), 0<y<1, (13 i ||| i gl” Ml” |H i i
wheren is the time index, which is incremented by 1 when + é > (|i_|j)2 ] (18)
the system reaches a stable point. 27
To satisfy the hard constraints on in Eqg. (2), we as- i
sume that increasing; by & implies that decreasing other 1h€ update rule for the surface process is
M—1 N's by 6/(M—1). Then the update rule fox; is ds.
0o o = llsi—ailP+ VImi(1-1)?Vs], (19
d_tlz_)\iai”Si_gi”_)\iMHVSiHZ(l_I)Z _ _
and the update rule for the line process is
A
+ o 2 [ayllsj—gjll+ plVs12(1-1)?] dl i
M-1/7 ! & —AlvsIPFa-1)-uli—BOEX (i-1)
+ uVAIR(1-1)2. 14
IV ) (14 — A i, (20
Now consider for blending of color and texture features.
In this case,M =2. Throughout the paper, processes and | _ 1 (21)
parameters related to the color features are denoted by a 1+exp(—I,/T)’
subscriptc and those related to the texture features are
denoted by a subscript Thus,s. denotes the color surface Where
rocesses ang, denotes the texture surface processes.
. o P lim A=0 lim B=1.0 lim T=0. 22)

Now the energy function of Eq8) becomes

t—ow t—o t—oo

—\2 _ 2 2 201 _1)\2 _ 2
E=Nac]lse—gel*+ M ][ Vs (1= D+ (1 =M e]sy The time variableA is the gain control of the Hopfield
—gidl2+ (1= N)2u||Vs2(1—t)2+ w| VA2 (1—1)2 analog neuron and is the temperature, as described in the
5 previous section. The variab begins with a large value
+ul%. (15 and decreases by a rate similar to that of the annealing

This yields the update rule for as temperaturel decrease. A typical scheduling f8ris

i B(n)=7B(n—1)+1, 0<#<1, (23
= _ _ _ _ 2__ 2
dt Maose— el — enllsi = i) = A1V scl*= [ Vsl so that it does not fall below 1. It is used to enhance the
contribution of the constrain=1; at early stages of the

+VLa(1-D?VA], (16) minimization process when the difference of two line pro-
cesses are very smaiee Eq(21)]. Without this enhance-
or ment, the last term in Eq6) is negligible at smalll, and it
~ does not contri_bute to the Iine_prqqess update _untiI _the _Iir]e
= —Eu(So) +Ef(s) + V[ n(1-1)2V\], (17) process establishes its state significantly. At this point, it is
dt not easy to change the state of the line process from the on

state to the off state or vice versa.
whereE,. andE; are the sums of the first two terms of the For the case with color and texture features, the energy
membrane energ{Eq. (1)] for the color and the texture function becomes
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E=acsc—gcl*+ aillsi— gl + wcl Ve 2(1-1c)? 5 Experimental Results
+ |l VsdlP2(1=10)%+ vl 2+ vl 2+ E(1 . — 1) 2. (24 5.1 Feature Extraction
. . For our experiment, Law’s texture filters are used as a part
The update rule for the color line process is of the texture feature extraction process. There are five 1-D

d filters producing possible 25 featurés different filters in
horizontal and vertical directions yields 25 different com-

mc 2 _ _ _ _

T_“C”VSC” (I=le)=wele B(t)g; (Ie=1o) bination of filterg at every pixel location. Law’s filters are

—A(t) e, (25 h,={1 4 6 4 1,

followed by Eq.(21). The subscriptsc andt must be h,={—-1 -2 0 2 1,
swapped for the texture line process update rule.
hs={—-1 0 2 0 —1},

4 Parameter Adaptation hy={-1 2 0 -2 1}, and
The conventional WMM, which assumes the same energy
function throughout the image often produces unsatisfac-hs={1 —4 6 —4 1}. (30

tory results especially when high-contrast regions and low-
contrast regions coexist within an image. In order to cir- The next operation after Law’s filter operation is a pix-
cumvent this problem, the parametercan be adjusted elwise nonlinear transformation using hyperbolic tangent.
locally based on the local feature statistics. This section For each pixel in the filter output images, pixel values is
briefly describes an effective parameter adaptation tech-modified by
nique (for more detail, see Ref. 10
By employing the mean field approximation on the Yy=tanhBx), (3D
WMM, the line process can be controlled*By
where 8 is a constant that is set to 1.0 throughout the ex-
1 perimentsx is the pretransformation value, adis the
= . (26) new value. This nonlinear transform enhances the contrast
1+exp (v—p|V[FT) of the features.
i i 12 Following the nonlinear transform is the local average
Itis easy to see in Eq26) that (v/p)™" acts as a threshold  eration. The average absolute deviation described in Ref.
for the Ilntlalzproce_ss. When the feature gradient is larger 1'is ysed. A concentric Gaussian is used as a window func-
than (/)™ the line process at the location develops into tjon for the averaging. The output of the average operation

the on state, otherwise develops into the off state. is
Our objective through adaptation of the parametirto

extract salient boundaries/edges regardless of their illumi- z=G=* J, (32
nation intensities. Initiallyy is estimated by

where
v=10%(X,y)?, (27)

Iy D =[1(xy)l, (33
where

[(x,y) is the input image, an@ is the concentric Gaussian.
C=|V|*G, (28) The size and the standard deviation of the Gaussian win-

dow must be adjusted to match the sizes of texels in each
image. Figure 2 shows the overall texture feature extraction
process.

Normalized pixel values are used as color features. For
each input image, pixel values are shifted and scaled so that
the mean of the pixel values are 0 and the variance is 1.0.

and G is a concentric Gaussian filter. Note that is
squared so that matches witV |2 in Eq. (26). With this
method,v adapts locally by the local feature gradient den-
sity and the global constant parametgr.

Like the surface process;(x,y) is also forced to be
smooth within a boundary, and discontinuities are allowed 5.2 Results
only at the boundary. To ensure this constraint, the same
nonlinear diffusion operation that is a part of the surface
process update in Eq9) is applied at the same rate with
the surface process. Thus,

Note that throughout the experiments, the color parameters

(ac,pc,voe) and the texture counterparts( w,vor) are

set to be equal for the blending through surface methods so

that we introduce a minimum amount of parameter adjust-

ment. On the other hand, we allowed two sets to be differ-

— V[ u(1-1)Vy]. (29) ent f_or the blending through line processes. _

dt Figures 3 and 4 show the results of two algorithms ap-
plied to synthetic images. The left images are the original

This nonlinear diffusion operation on reduces noises in  images, the center images are the results of the blending

the final line process result. through surface processes, and the right images are the re-
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input image the color feature, the bottom-left images are the results of
the blending through surface processes, and the bottom-
right images are the results of the blending through line
processes. The values of the parameters are given in the
Law’s texture filters caption of each figure. Figure 5 consists of two sofas, a
plain one(the one closer to the vieweand a colorful one.
Figure 6 consists of two moving cars, a textured surface,
and a nontextured but noisy surface.

Y For Fig. 5, the result with only the color feature could
. ) ) not distinguish the true region boundaries from the texture
n"n‘hgeaf pixel-wise edges within the colorful sofa pattern. The blending
peration .
through surface processes detected the boundaries of the

plain sofa, although the boundary for the colorful sofa is
noisy. The blending through line processes did not detect

L the sofa boundaries as well as the blending through surface
processes, however, it has much less spurious boundaries
average absolute deviation than the result with only the color featu¢®p right.

For Fig. 6, all results look similar, but the bottom two
(results through the blendingre less noisy and have better
boundary representation.

Y Figure 7 shows the final parameter images #and A
when the blending through surface processes is applied to
the sofa image(Fig. 5. Note that the parameters are
smooth within the region boundaries, is small within

i ) heavily textured regions while is large in the region.
sults of the blending through line processes. The values of

the parameters are given in the caption of each figure. The :
left image in Fig. 3 is the same test image shown in Fig. 1. 8 Conclusion

For Fig. 3, the blending through surface processes de-This paper introduced two algorithms for boundary detec-
tected most of the boundaries accurately with few spurious tion using multiple feature sets, mainly color and texture
boundaries inside the textured regions. The blending features. It also described a heuristic parameter adaptation
through line processes detected most of the boundaries, buscheme to enhance the performance of the algorithms.
they are thicker and less accurate than the blending through In all the experiments, the blending through surface pro-
surface process. The results of the blending through surfacecesses outperformed the blending through line processes
processes shows the most complete, most accurate, andnd no blending(only using the color featurgslt was
least noisy result among those shown in Fig. 1 and 3. rather surprising that without any prior information, the al-

For Fig. 4, the blending through surface processes de-gorithm tended to distinguish textured regions and nontex-
tected much more complete boundaries than the blendingtured regions, as can be seen in Fig. 7, through minimiza-
through line processes while picking up less boundaries. tion of the energy Eq(15).

Figures 5 and 6 show the results of boundary detection  The amount of parameter adjustment was very small for
applied to natural images. The top-left images are the origi- the blending through surface processes. This was another
nal images, the top-right images are the results using onlyadvantage over the blending through line processes.

extracted texture features

Fig. 2 Texture feature extraction process.

Y . -
i W
HIS AT T
(Ead B TETY
.-l [T T -

Fig. 3 Feature blending results I. The result of boundary detection on a synthetic image with textured
regions and nontextured regions: left, the original gray-scale image; middle, the result of the blending
through surface processes using both gray-scale pixel values and texture features («=0.5, ©=1.0,
and v0=0.02); and right, the result of the blending through line processes (a.=a;=0.1, u.=pu,
=1.0, v0.,=0.03, v0,=0.5, and A =4).
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Fig. 4 Feature blending results Il. The result of boundary detection on a synthetic image with textured
regions and nontextured regions: left, the original gray-scale image; middle, the result of the blending
through surface processes using both gray-scale pixel values and texture features («=0.3, ©=1.0,
and »0=0.03); and right, the result of the blending through line processes (a,=a;=0.1, u.=uy,;
=1.0, v0.,=0.01, v0,=0.5, and \=4).

Throughout the experiments, only two parameters were in- it is on a boundary or if one of the results shows that it is on
volved for adjustmenta and 10). a boundary and the location is indeed on a true boundary.
To show the effectiveness of the feature blending, The artificially (in a sense that the process requires the
WMM was applied on the synthetic imagésgs. 1 and 4 knowledge of the true boundarjegenerated boundary re-
using the color features and the texture features indepen-sults for two synthetic images are shown in Fig. 8. These
dently, thus generating two separate boundary results forresults are more accurate than the others shown previously.
each synthetic image. Given two boundary images, the op-However, the results of the blending through surface pro-
timal but artificial blending is performed by the following: cessegthe middle images of Figs. 3 and dre very com-
the location is a part of a boundary if both results agree that parable to the optimal results, thus the blending method
produced near optimal results on these synthetic images.

Fig. 5 Feature blending results Ill. The result of boundary detection
on a room with sofa image: top left, the original gray-scale image;
top right, the result of boundary detection using only gray-scale pixel
values («=0.3, ©=1.0, and »0=0.03); bottom left, the result of the
blending through surface processes using both gray-scale pixel val-
ues and texture features («=0.3, u=1.0, and »0=0.02); and bot-
tom right, the result of the blending through line processes (a.= «;
=0.5, u.=1.0, u=2.0, v0,=v0,=0.1, and A =8).
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Fig. 6 Feature blending results IV. The result of boundary detection
on a natural scene image: top left, the original gray-scale image; top
right, the result of boundary detection using only gray-scale pixel
values (¢=0.3, ©=1.0, and »0=0.03); bottom left, the result of the
blending through surface processes using both gray-scale pixel val-
ues and texture features («=0.3, ©=1.0, and »0=0.03); and bot-
tom right, the result of the blending through line processes (a.= a;
=04, u.=1.0, u,=4.0, v0,=v0,=0.1, and A=186).
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sult of the energy minimization process by the parameters.
New energy constraints must be devised and tested. This is
our future direction for more robust scene segmentation/
boundary detection mechanism.
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Fig. 8 Artificially generated optimal blending results: left, the result
for the synthetic image in Fig. 1; right, the result for the synthetic
image in Fig. 4. For more detail, see the text.

Optical Engineering, Vol. 37 No. 3, March 1998 835



